Novel agonist monoclonal antibodies activate TrkB receptors and demonstrate potent neurotrophic activities.

نویسندگان

  • Ming D Qian
  • Jie Zhang
  • Xiang-Yang Tan
  • Andrew Wood
  • Davinder Gill
  • Seongeun Cho
چکیده

Tyrosine kinase receptor B (TrkB) mediates neurotrophic effects of brain-derived neurotrophic factor (BDNF) to increase neuronal survival, differentiation, synaptic plasticity, and neurogenesis. The therapeutic potential of TrkB activation using BDNF has been demonstrated well in several preclinical models of CNS diseases, validating TrkB as a promising drug target. Therefore, we aimed to develop TrkB-specific receptor agonists by using a monoclonal antibody approach. After generation of hybridoma clones and assessment of their binding and functional activity, we identified five mouse monoclonal antibodies that show highly selective binding to TrkB and that induce robust activation of TrkB signaling. Epitope mapping studies using competition analysis showed that each of the monoclonal antibodies recognizes a unique binding site on TrkB, some of which are distinct from BDNF docking sites. These antibodies behave as true agonists based on their ability to both activate proximal and secondary signaling molecules downstream of TrkB receptors and promote neuronal survival and neurite outgrowth. The binding affinities and the functional efficacy of these antibodies are comparable to those of BDNF, whereas they do not bind to the p75 low-affinity neurotrophin receptor at all. Therefore, they could represent novel reagents to explore the pathophysiological roles of TrkB and its potential therapeutic utility in treating CNS disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity.

Neurotrophins, the cognate ligands for the Trk receptors, are homodimers and induce Trk dimerization through a symmetric bivalent mechanism. We report here that amitriptyline, an antidepressant drug, directly binds TrkA and TrkB and triggers their dimerization and activation. Amitriptyline, but not any other tricyclic or selective serotonin reuptake inhibitor antidepressants, promotes TrkA auto...

متن کامل

A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone.

Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes ...

متن کامل

The novel TrkB receptor agonist 7,8-dihydroxyflavone enhances neuromuscular transmission.

Neurotrophin signaling at the neuromuscular junction modulates cholinergic transmission and enhances neuromuscular transmission via the tropomyosin-related kinase receptor subtype B (TrkB).A novel flavonoid, 7,8-dihydroxyflavone (7,8-DHF), selectively activates TrkB receptors. Using TrkB(F616A) mice that are susceptible to specific inhibition of TrkB activity by 1NMPP1, we show that neuromuscul...

متن کامل

Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

BACKGROUND Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. Howe...

متن کامل

O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity.

7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 37  شماره 

صفحات  -

تاریخ انتشار 2006